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Abstract. This paper seeks to dispel the notion that the natural numbers

and the real numbers have different cardinalities. In order to do so, the proof
to Cantor’s Theorem and the proof that (0,1) ≉ N will be disproven. And, in

the process, it will be shown that the natural numbers cannot be treated as

both a set and a sequence simultaneously. Finally, the natural numbers will be
shown to be equivalent to the real numbers and the power set of the natural

numbers.

Introduction

Cardinality is commonly believed to differentiate between the size of the natural
numbers and the real numbers. In truth, however, cardinality shows the two sets
to be equivalent. This misconception arises from two flawed proofs, namely the
proof for Cantor’s Theorem and the proof that (0,1) ≉ N. In this paper, the flaw in
each proof will be demonstrated and discussed at length. Cantor’s Theorem will be
addressed first, since it provides the basis for increasing levels of cardinality. Then,
there will be a discussion of the error in the proof that (0,1) ≉ N, which centers
around the lack of distinction between the natural numbers as a set (ZFC Axioms)
and the natural numbers as a sequence (Peano’s Axioms). Finally, it will be shown
that the natural numbers (as both a set and a sequence) are equivalent to the real
numbers and the power set of the natural numbers.

Disproving the proof to Cantor’s Theorem

The flaw in the proof to Cantor’s Theorem stems from an assumed relationship
between the elements of the domain, A, and the co-domain, P(A). Specifically, the
proof assumes that every element in the domain, A, must be directly related to the
same element in the co-domain, P(A). This restricts the function, g, to a subset
of the possible mappings from A to P(A). Which means, the arbitrary function in
the proof is not actually arbitrary. 1

The mapping is obscured by the fact that both sets are composed of the same
underlying symbols. This is most evident in the variable, B, which is constructed
to create a contradiction. Due to the lack of distinction between the domain and
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1“Assume that there exists a bijection, g, then show a contradiction” is logically equivalent to

the statement that “For any function, g, assume that g is a bijection, then show a contradiction.”
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co-domain, the variable is allowed to be both a member of the co-domain and a
subset of the domain simultaneously. In order to remove the ambiguity between
the domain and the co-domain, the proof will be re-written with two equivalent
sets that do not share the same symbols.

Since the set, A, is any generic set, we can choose A to be the set of odd natu-
ral numbers. Then, the power set of A becomes the power set of the odd natural
numbers. And, since the power set of the even natural numbers is equivalent to
the power set of the odd natural numbers, the proof should still hold when the
power set of the odd natural numbers is replaced with the power set of the even
natural numbers. However, applying (the second part of) Cantor’s proof to these
sets yields the following:

Disproof: Cantor’s Theorem
Let O be the odd natural numbers and E be the even natural numbers. Given

O ≈ E , then P(O) ≈ P(E). Since cardinality is defined as a comparison between
the elements of two sets, comparing the cardinality of O to P(O), should be no
different than comparing the cardinality of O to P(E).

Applying Cantor’s proof to ∣O∣ ≠ ∣P(E)∣, suppose there exists g ∶ O
ontoÐ→
1-1 P(E).

Let B = {y ∈ O ∶ y ∉ g(y)}. Then, B = O, however, O ∉ P(E). So, there does not
exist a z ∈ O such that g(z) = B. Hence, the set, B, cannot be used to create a
contradiction. Therefore, the proof is invalid. �

In case the implied mapping is not immediately clear, consider the process of
modifying Cantor’s proof to show that ∣O∣ ≠ ∣P(E)∣.

First, let B = {y ∈ O ∶ y + 1 ∉ g(y)}. Notice that once again B ⊆ O and B ∉ P(E).
So, for the same reason as before, the proof is invalid.

Now, try letting B = {y ∈ E ∶ y ∉ g(y − 1)}, then B ∈ P(E). However, B ⊈ O, so
for any b ∈ B, g(b) is undefined. Once again, the proof is invalid.

Clearly, the set B cannot be both a subset of the domain and an element in
co-domain. In order to repeat Cantor’s proof with the odd natural numbers and
the power set of the even natural numbers, two separate sets must be used. The
modified version of (the second part of) Cantor’s proof is as follows:

Cantor’s Proof (Modified): Applied to ∣O∣ ≈ ∣P(E)∣
Suppose ∣O∣ = ∣P(E)∣, which is to say O ≈ P(E). Then, there exists g ∶ O

1−1Ð→
onto

P(E). Let B = {y ∈ O ∶ y + 1 ∉ g(y)} and let C = {x + 1 ∶ x ∈ B}. Then, B ⊆ O
and C ∈ P(E). Since g is onto P(E), there exists some z ∈ O such that g(z) = C.
Either z ∈ B or z ∉ B. If z ∈ B, then g(z) ≠ C, since for any z ∈ B, z + 1 ∉ g(z), yet
z + 1 ∈ C. If z ∉ B, then z + 1 ∈ g(z), however, z + 1 ∉ C since z ∉ B, so g(z) ≠ C.
Hence, in all cases, g(z) ≠ C, which is a contradiction, since g was assumed to be
onto P(E). Therefore, ∣O∣ ≠ ∣P(E)∣. �

By removing the shared symbols between the domain and the co-domain, the
implied mapping had to be turned into an explicit mapping in order to construct
the proof. Although, the mapping wasn’t formally introduced, the odd natural
numbers are repeatedly mapped to the even natural numbers by adding one to the
odd numbers.

In the original proof to Cantor’s Theorem, the implied mapping, f, is obscured
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by the fact that the power set is generated from the elements of A. This mapping
can be made explicit by setting f(a) = ac for all a ∈ A where ac has the same
symbol as a ∈ A, but is a sub-element of the co-domain, P(Ac). The co-domain
has been marked with a “c” in order better distinguish between the domain and
the co-domain (since they are composed of the same symbols). By replacing the
implicit mapping with an explicit mapping, the second part of Cantor’s original
proof can be re-written as follows:

Cantor’s Proof (Modified): Explicit mapping from A to Ac

Suppose ∣A∣ = ∣P(Ac)∣, which is to say A ≈ P(Ac). Then, there exists g ∶ A
1−1Ð→
onto

P(Ac). And, let there be a function, f ∶ A Ð→
1−1 Ac where f(a) = ac for all a ∈ A,

such that ac is the same symbol as a. Also, let B = {y ∈ A ∶ f(y) ∉ g(y)} and let
C = {f(x) ∶ x ∈ B}. Then, B ⊆ A and C ∈ P(Ac). Since g is onto P(A), there
exists some z ∈ A such that g(z) = C. Either z ∈ B or z ∉ B. If z ∈ B, then
g(z) ≠ C, since for any z ∈ B, f(z) ∉ g(z), yet f(z) ∈ C. If z ∉ B, then f(z) ∈ g(z),
however, f(z) ∉ C since z ∉ B, so g(z) ≠ C. Hence, in all cases, g(z) ≠ C, which is a
contradiction, since g was assumed to be onto P(A). Therefore, ∣A∣ ≠ ∣P(Ac)∣. �

At first glance, the proof to Cantor’s Theorem still seems to be perfectly valid.
However, in truth, the proof depends on the function, f, being one-to-one in order
to create a contradiction. And, by imposing the function, f, between the domain
and co-domain, a relationship is formed which restricts the function, g, to a proper
subset of all mappings. As a consequence, the arbitrary function, g, is no longer
arbitrary.

In order to prove that the function, f, must be one-to-one, assume the opposite;
that the function, f, is not one-to-one. In that case, there must exist z, z1 ∈ A
such that f(z) = f(z1). And, since g is arbitrary, we can let f(z) ∉ g(z) and
f(z1) ∈ g(z1). Which means that z ∈ B and z1 ∉ B. Hence, f(z) ∈ C since z ∈ B,
and, consequently, f(z1) ∈ C since f(z1) = f(z). However, the proof claims that
when z1 ∉ B, then f(z1) ∉ C, which is a contradiction since f(z1) ∈ C. Thus, when
z1 ∉ B, g(z1) may actually equal C. Therefore, the proof to Cantor’s Theorem is
not valid when the function, f, is not one-to-one.

Furthermore, to show that the function, f, is interjected between the domain
and the co-domain, consider allowing the function, f, to be a bijection onto the
sub-codomain, Ac (instead of only one-to-one). Then, an alternative function, F −1

can be defined as F −1(Z) = {f−1(z) ∶ z ∈ Z} for any Z ⊂ Ac since every element
of Ac has an inverse image under f. And, consequently, the set B can be rewritten
as B = {y ∈ A ∶ y ∉ F −1(g(y))}, which shows how the function, g, is effectively
superseded by the function, f. However, since the proof only uses the images of f,
and not their inverses, it is unnecessary for the function, f, to be onto P(Ac).

By imposing the function, f, between the domain, A, and co-domain, P(Ac),
every image of the function, g, is expected to contain the image of f (for the same
element of A). And, because the function, f, is one-to-one, only a single element
in the domain can map to any specific element in Ac. This unnecessarily limits
the function, g, to a proper subset of all mappings even though the function, g, is
supposed to be arbitrary.

To illustrate the effect on the function, g, allow the set A to be replaced by
the natural numbers in the original proof to Cantor’s Theorem. Since the original
proof expected the elements in the domain to be mapped to the same elements in
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its powerset, the function, f, can be defined as f(n) = n for all n ∈ N. Which results
in the proof assuming that the function, g, must fall within the following subset of
mappings:

g ⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1,{1}) (2,{2}) (3,{3}) (4,{4}) . . .
(1,{1,2}) (2,{1,2}) (3,{1,3}) (4,{1,4}) . . .
(1,{1,3}) (2,{2,3}) (3,{2,3}) (4,{2,4}) . . .
(1,{1,2,3}) (2,{1,2,3}) (3,{1,2,3}) (4,{3,4}) . . .
(1,{1,4}) (2,{2,4}) (3,{3,4}) (4,{1,2,4}) . . .
⋮ ⋮ ⋮ ⋮

Importantly, notice that the subset assumes that the function, g, cannot map an
element in the domain to a set in P(Nc) without the same element (i.e., (1,{2}) ∉ g
and (3,{1,2}) ∉ g).

The proof’s assumption that the function, g, must fall within this subset can
be verified in the proof itself, by setting g = {(y,{f(y)}) ∶ y ∈ A}. This results
in B being the null set, since there does not exist a y ∈ A such that f(y) ∉ g(y).
Consequently, C = ∅ since B = ∅. And, because the null set in A can be mapped to
the null set in P(Ac), the proof does not create a contradiction, even though the
function, g, is not onto the power set.2

Thus, in order to create a contradiction, the proof not only assumed that the
function, g, was limited to a proper subset of mappings, but also that the function,
g, had a mapping outside of the assumed relationship. Although this could be
viewed as the proof assuming it’s own contradiction, it would be more accurate to
say that the proof relied on the reader to intuitively know that a function from the
assumed subset could not be onto the power set. So, instead, the reader chooses
a function, g, which generates a contradiction and concludes the proof is valid.
However, the contradiction only occurred because the function, g, was limited to a
proper subset of the mappings in the first place. And, by placing this limit on the
function, g, it is not actually arbitrary. Therefore, the proof is invalid.

Disproving the proof that (0,1) ≉ N

At the heart of the flaw in the proof that (0,1) ≉ N lies a fundamental issue with
the treatment of the natural numbers. Generally, the natural numbers are accepted
to be both a set and a sequence at the same time. However, a set is not a sequence
and a sequence is not a set. Sequences have an infinite number of steps, whereas
sets do not have any steps at all. And, since an object cannot have both an infinite
number of steps and zero steps, it is impossible for an object to be both a set and
a sequence at the same time. Therefore, the natural numbers cannot be treated as

2To prove that if f is one-to-one then g cannot be onto P (A), assume that there are functions,

g ∶ A
1−1
Ð→

onto P(Ac) and f ∶ A
Ð→

1−1 Ac. Furthermore, let g ⊂ {(x,X) ∶ x ∈ A ∧X ⊂ P(Ac) ∧ f(x) ∈ X}.
Then, either (∀x ∈ A)(g(x) = {f(x)}) ∨ (∃x ∈ A)(g(x) ≠ {f(x)}). If (∀x ∈ A)(g(x) = {f(x)})

then let B = {f(x1), f(x2)} for any x1, x2 ∈ A. Since every image of g only has one element,
there does not exist an x ∈ A such that g(x) = B. Hence, g is not onto P(Ac). Otherwise, if
(∃x ∈ A)(g(x) ≠ {f(x)}), then let B = {f(x1)} for some x1 ∈ A where g(x1) ≠ {f(x1)}. Since
f is one-to-one and (∀x ∈ A)(f(x) ∈ g(x)), there does not exist an x ∈ A such that g(x) = B.

Hence, g is still not onto P(Ac). Therefore, if g ⊂ {(x,X) ∶ x ∈ A∧X ⊂ P(Ac)∧ f(x) ∈ X} for any

f ∶ A
Ð→

1−1 Ac, then g is not onto P(Ac).
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both a set and a sequence simultaneously. 3

Since sequences have an infinite number of steps, they are often fully defined
through the use of a deterministic algorithm, which allows it to be stated whether
or not an element exists in the sequence. For example, if a sequence is defined as
Sn = { 1n ∶ ∀n ∈ N}, then it can be definitively stated that for any n ∈ N, Sn ≠ 2. This
statement is rather clear, because a value was defined for every step in the sequence
and those values are strictly decreasing from an initial value of 1. However, if only
the first three elements of a sequence, Tm, were defined, as say T1 = 1, T2 = 1

2
, and

T3 = 1
3
, then it could not be said that for all m ∈ N that Tm ≠ 2, since there may be

some not-yet-defined step in the sequence which has a value of 2.
Although this seems to be an obvious statement, the proof that (0,1) ≉ N es-

sentially makes this claim. Despite characterizing, f, as a function from all natural
numbers onto (0,1), the proof actually defines f sequentially to a specific natural
number, n. From there, a value, b, is constructed from the images of f, in order to
create a value outside of the range. However, the proof neglects to mention that
the number, i, which is used to construct the value, b, cannot exceed the number of
defined images, n. This leaves the reader with the false impression that the entire
sequence has been iterated through, even though only a finite number of images
have been defined. And, when the proof takes into account that the sequence has
only been partially defined, it immediately becomes apparent that proof does not
show that (0,1) is denumerable. After all, the same logic could be used to argue
that the cardinality of odd natural numbers is greater than the cardinality of the
natural numbers themselves (which is obviously untrue).

Disproof: Proof of (0,1) ≉ N
Suppose O is denumerable, where O are the odd natural numbers. Then there

is a function f ∶ N → O that is one-to-one and onto O. Write the images of f, for
each n ∈ N, in normalized form:

f(1) = a1m1 . . . a12a11a10

f(2) = a2m2 . . . a22a21a20

f(3) = a3m3 . . . a32a31a30

f(4) = a4m4 . . . a42a41a40

⋮
f(n) = anmn . . . an2an1an0

⋮

Now let b be the number b = bn . . . b2b1.

bi = {
5 if aii ≠ 5 or aii D.N.E.
3 if aii = 5

Then b ∈ O because of the way it has been constructed. However, for each natural
number, n, b for f(n) differs in the n’th decimal place. Thus b ≠ f(n) for any n ∈ N,

3Furthermore, a sequence is not a set, because sequences are not necessarily equal if they
contain the same elements (or, in other words, the Axiom of Extensionality does not apply to

sequences).
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which means b ∉ Rng(f). Thus, f is not onto O. This contradicts our assumption
that f is onto O. Therefore, O is not denumerable. However, O is denumerable.
Therefore, the proof is invalid. �

The odd natural numbers seem to have a larger cardinality than the natural
numbers themselves, because the odd natural numbers were represented by a set
instead of a sequence. And, since sets do not have any steps, all of the odd natural
numbers must be available immediately. Therefore, regardless of the step, there
will always be another odd natural number which has not been represented in the
sequence of the natural numbers. 4

An alternative way of viewing the original proof is that the function, f, was fully
defined from the beginning and only the value, b, was constructed sequentially. In
that case, each step in the construction of the value, b, was chosen so that it differed
from the images of the function, f, from one to that step. And, since each step in
the sequence was specifically chosen so that it only differed from the previous step
by its least significant digit, the sequence converges to a single value, b, in the open
interval between zero and one.

On the surface, it might seem as if the value, b, is outside of the range of the
sequence due to the way it was constructed. However, simply because a value does
not exist in the function up until that point, does not mean the value does not exist
in the function at some future point.

Consider applying the proof to the function, f ∶ N → (0,1) where f(x) =
0.x1x2x3 . . . and x ∈ N is represented as x = . . . x3x2x1. The function, f, can
be listed out sequentially as (f(1), f(2), f(3), . . .) which equals (0.1,0.2,0.3, . . .).
Then, the value, b, can be constructed sequentially as (0.5,0.55,0.555, . . .) which
approaches the value 0.5. However, notice that every value in the sequence used
to construct the value, b, also exists in the sequence of f. Specifically, the subse-
quence (f(5), f(55), f(555), . . .) equals (0.5,0.55,0.555, . . .) which approaches the
value 0.5 as well. Thus, the value, b, was not constructed outside the range of
the sequence of f, but rather, it was constructed at a different rate than it was
constructed in the sequence of f.

Therefore, the proof was incorrect when it stated that the value, b, was not an
element in the sequence because of the way it was constructed. Instead, it would
be more accurate to say that the value, b, was not an element in the sequence at
the time it was constructed.

The Natural Numbers as a Set

In the process of discussing the flaw in the proof that (0,1) ≉ N, the open interval
was replaced with the odd natural numbers, in order to demonstrate how the logic
of the proof could also be used to claim that the odd natural numbers had a greater
cardinality than all of the natural numbers. Although the logic was clearly flawed,
it demonstrated that the sequence of the natural numbers only has a finite number
of elements at any specific step. And, therefore, the sequence of natural numbers
only has an infinite number of elements, because it has an infinite number of steps.

4The proof requires the value, n, as an end point to the sequence, because without it, the
sequence would continue to be defined forever and the proof could not progress to the next

argument (similar to a programmatic infinite loop).
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Unlike the sequence of the natural numbers, the set of the natural numbers do
not have any steps. Instead each element in the set of the natural numbers is solely
represented by a unique symbol. This symbol typically consists of a finite number
of digits from a specific base (e.g., the decimal system, binary system, etc). While
this representation is perfectly adequate when considering the natural numbers as a
sequence, it is inadequate when describing them as a set. Limiting the format of a
natural number to a finite number of digits, say n, with a finite base, say b, can only
yield bn natural numbers, which is finite (since both of the components are finite).
And, since the sequence of the natural numbers has an infinite number of elements,
the set of the natural numbers need to have an infinite number of elements as well.

A simple way to resolve this issue is to allow the elements in the set of the natural
numbers to be represented with an infinite number of digits. This allows the set of
the natural numbers to be fully defined with an infinite number of elements from
the onset, while still maintaining a familiar representation of the natural numbers.
Thus, in the following proofs, elements in the set of natural numbers will be repre-
sented with an infinite number of digits. Any natural number that can be defined
with a finite number of digits will be proceeded by infinite number of zeros.

Theorem 1. N ≈ (0,1)
The set of natural numbers has the same cardinality as the open interval, (0,1).

Proof: N ≈ (0,1)
Let f ∶ N → (0,1) be defined as f(x) = 0.x1x2x3 . . ., where x ∈ N is represented

in decimal format as x = . . . x3x2x1.
Let f(y) = f(z) for some y, z ∈ N. Then, represent f(y) = 0.y1y2y3 . . . and

f(z) = 0.z1z2z3 . . .. By the definition of f, y = . . . y3y2y1 and z = . . . z3z2z1. And,
since f(y) = f(z), then yi = zi for all i ∈ N. Thus y = z and, therefore, f is one-to-
one.

Choose any p ∈ (0,1) where p = 0.p1p2p3 . . .. Notice if u = . . . p3p2p1, then
f(u) = 0.p1p2p3 . . . = p. Hence, f is onto (0,1).

Since f is one-to-one and onto (0,1), then f is a bijection. Therefore, N ≈ (0,1).
�

Corollary 1. N ≈R
The set of natural numbers has the same cardinality as the real numbers.

Proof: N ≈R
Given N ≈ (0,1) and (0,1) ≈R, then N ≈R. 5 �

Theorem 2. N ≈ P(N)
The set of natural numbers has the same cardinality as the power set of the

natural numbers.

Proof: N ≈ P(N)
Let f ∶ N → P(N) be defined for all x ∈ N where x is represented in binary as

5If the proof that N ≈ R does not seem satisfying, then consider the bijection, f ∶ N→ R, where
the natural numbers are represented in binary. Define f such that for any n ∈ N, if n mod 2 = 0
then f(n) is negative, otherwise it is positive. The digits of f(n) left of the decimal point are the

same as n where the powers of two are odd. And, the digits of f(n) right of the decimal point
are the same as n where the powers of two are even except mirrored around the decimal place
(excluding 20). For example, f(11000) = −10.01 and f(100010001) = 0000.0101 = 0.0101.



8 BLAINE HOLCOMB

x = . . . x3x2x1 and f(x) = {i ∈ N ∶ xi = 1}.
For the sake of contradiction, assume there exists x, y ∈ N such that f(x) = f(y)

and x ≠ y. For any i ∈ N, if i ∈ f(x) then xi = 1 and since f(x) = f(y), then i ∈ f(y)
and yi = 1. Similarly, if i ∉ f(x) then xi = 0 and since f(x) = f(y), then i ∉ f(y)
and yi = 0. Hence, x = y since xi = yi for all i ∈ N, which is a contradiction since
it was assumed that x ≠ y. Thus, whenever f(x) = f(y), x = y. Therefore, f is
one-to-one.

For any Z ∈ P(N), then Z can be represented as {z1, z2, . . .}. Let z =
∞
∑
j=1
(2(zj−1))

and notice that f(z) = Z. Hence, for all Z ∈ P(N), there exists an element in the
natural numbers, namely z, such that f(z) = Z. Therefore, f is onto P(N). 6

Since, there exists a one-to-one function, f, from N onto P(N), then P(N) is
denumerable. Therefore, P(N) ≈ N.

�

The Natural Numbers as a Sequence

Proving that the set of natural numbers is equivalent to the real numbers and
the power set of the natural numbers is rather straight-forward, since the concept
of cardinality is defined between two sets. However, the natural numbers have tra-
ditionally been defined as a sequence through Peano’s Axioms. This process adds a
new natural number with each step through an infinite number of steps (commonly
referred to as counting). Although Peano’s Axioms define the natural numbers as
the process of counting, it is more accurate to say that the natural numbers are the
union of all of the elements defined by counting. Or, in other words, counting is a
sequence, while the natural numbers are its series (using union in place of addition).

The same underlying concept to bijections can be used to show that a sequence
is equivalent to a set. The one-to-one aspect of cardinality is rather trivial when
discussing a sequence, since any elements that are duplicated can be removed as
long as new elements are continually being added to the sequence. However, for
simplicity, the proofs in this section will only map the sequences to unique ele-
ments. The concept of a sequence being onto a set is somewhat more complicated.
Clearly, an element of the set is mapped to by a sequence, if there exists a step in
the sequence that corresponds to the element. However, since there are an infinite
number of steps in a sequence, some elements will never be reached. Therefore, an
element will also be considered a member of the sequence, if there exists a conver-
gent subsequence that approaches the element. 7

Of course, in order to have the concept of convergence, the set must also have
a metric. In the case of mapping a sequence to the (0,1), the usual metric will be
sufficient. Furthermore, to distinguish between the set of natural numbers and the
sequence of the natural numbers, the sequence of natural numbers will be symbol-
ized as Nq. Hence, the proof that the sequence of the natural numbers is equivalent
to the (0,1) with the usual metric, will be represented as Nq ≈ ((0,1), ∣∣). Finally,
since any step in a sequence is preceded by a determinable number of prior steps,

6Since every set must contain the null set, the null set in N can be mapped to the null set in
P(N). If this doesn’t seem sufficient, then one can be subtracted from x and f(0) can be mapped
to the null set.

7Or, in other words, a value is considered a member of the sequence, if the value is approached
by the sequence, not just if the sequence approaches the value.
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each step will be represented with a finite number of digits.

Theorem 3. Nq ≈ ((0,1), ∣∣)
The sequence of the natural numbers has the same cardinality as the open inter-

val, (0,1), with the usual metric.

Proof: Nq ≈ ((0,1), ∣∣)
Define the sequence, Si = .i1i2 . . . ij where any i ∈ Nq is represent by the decimal

expansion i = ijij−1 . . . i1. Notice that since S is a sequence, each step, i, can be
represented with a finite number of digits.

Assume for the sake of contradiction, that there exists a, b ∈ Nq such that
Sa = Sb and a ≠ b. Let Sa = .a1a2 . . . ac and Sb = .b1b2 . . . bd, where a = ac . . . a1
and b = bd . . . b1. Since Sa = Sb, then .a1a2 . . . ac = .b1b2 . . . bd. Without loss
of generality, let d > c. Then, bc+1, . . . , bd = 0 since Sa = Sb, and thus, Sb can
be rewritten as .b1b2 . . . bc. And, since Sa = Sb, ae = be for all e ≤ c. Hence
a = ac . . . a2a1 = bc . . . b2b1 = b, which is a contradiction since a ≠ b. Thus, whenever
Sa = Sb, a = b. Therefore, every element in the sequence, S, is distinct (i.e., S is
one-to-one).

Choose any element, x ∈ (0,1). If x can be represented by a finite number of dig-
its, then x can be represented in decimal format as x = .x1x2x3 . . . xn−1xn. Then, let
y = xnxn−1 . . . x1, and notice that Sy = x by the way the sequence was constructed.

Otherwise, if x cannot be written with a finite number of digits, let x be rep-
resented x = .x1x2x3 . . . and choose the initial point for the subsequence, K, from
S, such that K1 = Sxu...x1 = .x1 . . . xu where xu is the first non-zero value in x and
u is its position. For every subsequent step after m ∈ Nq, find the next non-zero
element in x, signified xw, and let Km+1 = Sxw...xv...x1 = .x1 . . . xv . . . xw where xv
is the previous non-zero value in x. Notice that, for all m ∈ Nq, Km,Km+1 ∈ S and
Km+1 is after Km in S, since xw . . . xv . . . x1 > xv . . . x1. Hence, K is a subsequence
of S.

Choose any ε ∈ R such that ε > 0. If ε ≥ 1, then choose p = 1. Since, for any
p ∈ Nq, ∣x −Kp∣ < 1 (since 0 < x,Kp < 1). Otherwise, if 0 < ε < 1, then represent ε as
the decimal expansion ε = ε1ε2ε3 . . .. Let p be the location of the most significant
digit in ε. Then, notice ∣x −Kp∣ < ε, since the p’th step in the subsequence differs
from x at the (p + 1)’th digit (if not further). And, since for all ε > 0 there exists a
p ∈ Nq, such that ∣x −Kp∣ ≤ ε, then K converges to x.

Thus, for any x ∈ (0,1), either there exists either a step, y ∈ Nq, such that Sy = x,
or there exists a subsequence, K ⊂ S, such that K converges to x. Therefore, the
sequence, S, is onto (0,1) with the usual metric.

Therefore, since the sequence S is one-to-one and onto (0,1) with the usual
metric, Nq ≈ ((0,1), ∣∣). �

Corollary 2. Nq ≈ (R, ∣∣)
The sequence of the natural numbers has the same cardinality as the real numbers

with the usual metric.

Proof: Nq ≈ (R, ∣∣)
Given Nq ≈ ((0,1), ∣∣) and (0,1) ≈R, then Nq ≈ (R, ∣∣). �

Intuitively, the sequence of the natural numbers should be considered equivalent
to the set of the natural numbers when every element in the sequence is mapped
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to the same element in the set. Unfortunately, it is impossible to converge to any
element in the set with an infinite number of digits using the usual metric, since
the difference between any two non-equal natural numbers will always be at least
one. This means that when ε is less than one, there can never be a step in the
sequence with a difference less than ε. And, therefore, by the standard definition
of convergence, these elements can never reached by the sequence.

Yet, the sequence of the natural numbers is clearly equivalent to the set of the
natural numbers. So, in order to resolve the issue, a sequence will be said to ap-
proach an element in the set of natural numbers, if the distance to that element
is strictly decreasing at a steady or accelerating rate. And, since every metric is
bounded below by zero, the distance must go to zero as the sequence goes to infin-
ity. Therefore, the sequence approaches the element.

At this point, it is possible to show that the set and sequence of the natural
numbers are equivalent. Every element in the set is the natural numbers with a
finite number of digits can be mapped directly to the same element in the sequence
of natural numbers. And, every element with an infinite number of digits has a
subsequence in the sequence of the natural numbers which approaches its value
using the usual metric. Specifically, any element in the set with an infinite number
of digits, n, can be represented as n = . . . n3n2n1. Which allows the subsequence
{ni1 . . . n1, ni2 . . . ni1 . . . n1, . . .} to be chosen from Nq, where nix+1 is the next non-
zero number in n after nix for all x ∈ Nq. Notice that the subsequence approaches
the element, n, at an accelerating rate under the usual metric. Hence, any element
in the set of the natural numbers with an infinite number of digits has a subse-
quence in the sequence of the natural numbers that approaches the element. And,
therefore, the sequence of the natural numbers is equivalent to the set of the natural
numbers.

The same methodology can be applied to the sequence of the natural numbers
to show that it is equivalent to the power set of the natural numbers. Of course,
the usual metric cannot be applied to a set, so instead a different metric will have
to be used.

Theorem 4. Nq ≈ (P(N),C)
The sequence of the natural numbers has the same cardinality as the power set

of the natural numbers when the metric is the number of differing elements.

Lemma 1. The number of differing elements, C, is a metric on P(N)

Proof. C is a metric on P(N)
Define C ∶ S1XS2 → N as the number of elements which differ between the two

sets, S1, S2 ∈ P(N). Or, more formally, C(S1, S2) = ∣{x ∈ S1 ∶ x ∉ S2}∣ + ∣{y ∈ S2 ∶ y ∉
S1}∣ where ∣∣ is the cardinality of the sets.
(i) Positivity. C(S1, S2) ≥ 0 for all S1, S2 ∈ P(N), since ∣{x ∈ S1 ∶ x ∉ S2}∣ ≥ 0 and
∣{y ∈ S2 ∶ y ∉ S1}∣ ≥ 0. Additionally, C(S1, S2) = 0 iff ∣{x ∈ S1 ∶ x ∉ S2}∣ = 0 and
∣{y ∈ S2 ∶ y ∉ S1}∣ = 0 iff (∀x ∈ S1)x ∈ S2 and (∀y ∈ S2)y ∈ S1 iff S1 = S2.
(ii) Symmetry. For all S1, S2 ∈ P(N), C(S1, S2) = ∣{x ∈ S1 ∶ x ∉ S2}∣ + ∣{y ∈ S2 ∶ y ∉
S1}∣ = ∣{y ∈ S2 ∶ y ∉ S1}∣ + ∣{x ∈ S1 ∶ x ∉ S2}∣ = C(S2, S1).
(iii) The Triangle Inequality. The following will show that for any S1, S2, S3 ∈
P(N), C(S1, S3) ≤ C(S1, S2) + C(S2, S3):
C(S1, S2) + C(S2, S3) = (∣S2 − S1∣ + ∣S1 − S2∣) + (∣S3 − S2∣ + ∣S2 − S3∣)
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= (∣((S2 − S1) − S3)∣ + ∣((S2 − S1) ∩ S3)∣) + (∣((S1 − S2) − S3)∣ + ∣((S1 − S2) ∩ S3)∣)
+ (∣((S3 −S2)−S1)∣+ ∣((S3 −S2)∩S1)∣)+ (∣((S2 −S3)−S1)∣+ ∣((S2 −S3)∩S1)∣)

= (∣((S1 − S2) − S3)∣ + ∣((S2 − S3) ∩ S1)∣) + (∣((S3 − S2) − S1)∣ + ∣((S2 − S1) ∩ S3)∣)
+ ∣((S2 − S1) − S3)∣ + ∣((S2 − S3) − S1)∣ + ∣((S1 − S2) ∩ S3)∣ + ∣((S3 − S2) ∩ S1)∣

= ∣S1 − S3∣ + ∣S3 − S1∣ + 2∣((S2 − S1) − S3)∣ + 2∣((S1 − S2) ∩ S3)∣
= C(S1, S3) + 2∣((S2 − S1) − S3)∣ + 2∣((S1 − S2) ∩ S3)∣ ≥ C(S1, S3),

since 2∣((S2 − S1) − S3)∣ + 2∣((S1 − S2) ∩ S3)∣ ≥ 0. �

Figure 1. (S1 − S3) ∪ (S3 − S1)

Proof. Nq ≈ (P(N),C)
Define the sequence, Si = {k ∈ Nq ∶ (i − 1)k = 1} where i ∈ Nq is represented in

binary as i = i1i2 . . . ij for some j ∈ Nq.
By construction, the sequence is one-to-one, since the elements in the sequence

are based on the representation of the natural number in binary, which must be
unique.

For any X ∈ P(N), either X has a finite number elements or X has an infinite
number of elements. If X has a finite number of elements, say n, then let

b = (
n

∑
c=1
(2(xc−1))) + 1 where xc is the c’th element of X. Then, Sb =X, so X ∈ S.

If X has an infinite number of elements, consider the subsequence, K ⊂ S, defined

by Km = Sy where y = (
m

∑
p=1
(2(xp−1)))+1, m is the m’th element in the subsequence,

and xp is the p’th element in X. Then, for any z ∈ Nq, C(Kz+1,X) = C(Kz,X)−1 or,
in other words, K is strictly decreasing by a rate of one per step. Also, notice that
C is bounded below by zero, since C is a metric. Hence, C(Kz,X) → 0 as z → ∞.
Therefore, as K goes to infinity, K approaches X.

For any X ∈ P(N), either there exists a b ∈ Nq such that Sb = X, or there exists
a subsequence, K ⊂ S, such that as K goes to infinity, K approaches X. Thus, S is
onto (P(N),C).
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Hence, S is one-to-one and onto (P(N),C). Therefore, Nq ≈ (P(N),C).8
�

Conclusion

The paper began by discussing the flaws in two proofs, which were key to show-
ing that the natural numbers are not equivalent to the real numbers and the power
set of the natural numbers, namely Cantor’s Theorem and the proof that (0,1) ≉ N.
Both of these proofs were flawed in their own way. The proof to Cantor’s Theo-
rem unintentionally assumed that the elements in the domain must be mapped to
the same elements in the co-domain. And, consequently, the arbitrary function in
proof was restricted to a proper subset of possible mappings, which made the proof
invalid. In the case of the proof that (0,1) ≉ N, the proof sequentially constructed
a value which was meant to be outside of the range of an arbitrary function. How-
ever, by modifying the value at each step in the sequence, the proof only created
a value that was outside of the sequence up to that particular step. Which meant
that the value could still exist at some later point in the sequence. And, therefore,
the proof that (0,1) ≉ N was invalid as well.

The flaw in the proof that (0,1) ≉ N helped demonstrate a key difference be-
tween a sequence and an infinite set. Sequences have an infinite number of elements
because they have an infinite number of steps whereas infinite sets must have all of
their elements defined from the onset. The natural numbers have commonly been
considered both a sequence and a set simultaneously. However, since sequences
have a infinite number of steps and sets do not have any steps at all, the natural
numbers can not be both at the same time. When the natural numbers are repre-
sented as a set, they must have an infinite number of elements defined immediately.
Thus, an element in the set of the natural numbers can be represented with an in-
finite number of digits. On the other hand, when the natural numbers are defined
sequentially, it will take an infinite number of steps to reach some of the elements
in the sequence. Therefore, an element is considered to be in a sequence if it exists
at a specific step or if a subsequence approaches the element.

Intuitively, the sequence of the natural numbers should be equivalent to the set
of the natural numbers when every element in the sequence is mapped to the same
element in the set. However, because the difference between any two non-equal nat-
ural numbers is always greater than or equal to one, the sequence cannot be shown
to converge to an element in the set with an infinite number of digits (with the
traditional definition of convergence). Instead, a sequence will be said to approach
the element in the set if the distance goes to zero at a steady of accelerating rate.
This guarantees the sequence can overcome the infinite distance to the element.
Which allows the sequence of the natural numbers to be equivalent to the set of
the natural numbers as expected.

Once the distinction between the natural numbers as a set and as a sequence
has been made, it is almost trivial to prove that the natural numbers are equivalent
to real numbers and the power set of the natural numbers. The natural numbers
can be mirrored around the decimal point to create the open interval between zero
and one, which is equivalent to the real numbers. And, every element in the power

8The proof was only written as if the elements were ordered to make it more readable. Any
element can be chosen from the set, X, in order to determine the next step in the subsequence as

long as that element has not already been selected.
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set can be created by using the digits in the binary representation of the natural
numbers as switches to determine whether or not a number appears in an element
of the power set. Thus, proving that the natural numbers are equivalent to the real
numbers and the power set of the natural numbers.

The conclusion that the real numbers and the power set of the natural natu-
ral numbers are equivalent to the natural numbers has important ramifications for
the concept of cardinality. One of the most direct consequences of these proofs is
the irrelevance of the Continuum Hypothesis. Since the natural numbers have been
shown to have the same cardinality as the real numbers, there can not be a cardinal
number between ℵ0 and c, which means the Continuum Hypothesis is trivially true.
More importantly, by showing that the set of the natural numbers is equivalent to
the power set of the natural numbers, Cantor’s Theorem must not be true. And,
without Cantor’s Theorem, there is no longer any basis to believe that infinite sets
can have different cardinalities.

To the contrary, the Well-Ordering Theorem essentially states that all infinite
sets have the same cardinality. By this theorem, every set, including the real num-
bers and the power set of the natural numbers, has a function which can identify a
minimum element and order the elements linearly. Which means, that every infinite
set can be mapped to a sequence. And, since the natural numbers can be defined
as a sequence, the Well-Ordering Theorem has already shown that every infinite set
can be mapped to the natural numbers. Therefore, all infinite sets have the same
cardinality as the natural numbers.
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Appendix

Note that for all of the proofs below, the cardinality of a set was notated with a
double overline instead of ∣∣, since that was the notation used in the source.

Theorem 5 (Cantor’s Theorem). For every set A, A < P (A) 9

Proof. To show A < P (A), we must first show that (i) A ≤ P (A) and (ii) A ≠ P (A).
Part (i) follows from the fact that F ∶ A → P (A) defined by F (x) = {x} is one-to-
one.

To prove (ii), suppose A = P (A); that is, assume A ≈ P (A). Then there exists

g ∶ A
1−1Ð→
onto P (A). Let B = {y ∈ A ∶ y ∉ g(y)}. Since B ⊆ A, B ∈ P (A), and since g

is onto P (A), B = g(z) for some z ∈ A. Now either z ∈ B or z ∉ B. If z ∈ B, then
z ∉ g(z) = B, a contradiction. Similarly, z ∉ B implies z ∉ g(z), which implies z ∈ B
again a contradiction. We conclude that A is not equivalent to P (A) and hence

A < P (A). �

Theorem 6. (0,1) is Uncountable 10

Proof. The interval (0,1) includes the subset { 1
2k

∶ k ∈ N}, which is infinite. Thus,
since every subset of a finite set is finite, (0,1) is infinite.

Suppose (0,1) is denumerable. Then there is a function f ∶ N → (0,1) that is
one-to-one and onto (0,1). Write the images of f, for each n ∈ N, in normalized form:

f(1) = 0.a11a12a13a14a15 . . .

f(2) = 0.a21a22a23a24a25 . . .

f(3) = 0.a31a32a33a34a35 . . .

f(4) = 0.a41a42a43a44a45 . . .

⋮
f(n) = 0.an1an2an3an4an5 . . .

⋮

Now let b be the number b = 0.b1b2b3b4b5 . . ., where

bi = {
5 if aii ≠ 5
3 if aii = 5

Then b ∈ (0,1) because of the way it has been constructed. However, for each
natural number n, b differs from f(n) in the nth decimal place. Thus, b ≠ f(n) for
any n ∈ N, which means b ∉ Rng(f). Thus, f is not onto (0,1). This contradicts
our assumption that f is onto (0,1). Therefore, (0,1) is not denumerable. �

9Douglas Smith, Maurice Eggen, and Richard St. Andre, A Transition to Advanced Mathe-

matics, 7th Edition (Boston: Brooks/Cole, 2011), p261
10Douglas Smith, Maurice Eggen, and Richard St. Andre, A Transition to Advanced Mathe-

matics, 7th Edition (Boston: Brooks/Cole, 2011), p246.
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Theorem 7. R is Uncountable 11

Proof. Define f ∶ (0,1) → R by f(x) = tan(πx − π
2
). The function f is a contradic-

tion and translation of one branch of the tangent function and is one-to-one and
onto R. Thus (0,1) ≈R. �

Theorem 8. P (N) = c 12

Proof. First, recall that any real number in the interval (0,1) may be expressed in a
base 2 (binary) expansion 0.b1b2b3b4 . . ., where each bi is either 0 or 1. If we exclude
sequences that terminate with infinitely many 1’s, such as 0.010111111 . . . (which
has the same value as 0.0110000 . . .), then the representation is unique. Thus we
may define a function f ∶ (0,1)→ P (N) such that for each x ∈ (0,1),

f(x) = {n ∈ N ∶ bn = 1 in the binary representation of x}

The uniqueness of binary representations ensures that the function is defined

and is one-to-one. Since f is one-to-one, (0,1) ≤ P (N).
Next, define g ∶ P (N)→ (0,1) by g(A) = 0.a1a2a3a4 . . ., where

an = {
2 if n ∈ A
5 if n ∉ A

For any set A ⊆ N, g(A) is a real number in (0,1) with decimal expansion
consisting of 2’s and 5’s. (Any pair of digits not including 9 will do.) The function

g is one-to-one but certainly not onto (0,1). Therefore, P (N) ≤ (0,1).
By the Cantor-Schröder-Bernstein Theorem, P (N) = (0,1). Therefore P (N) = c.

�
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